A critical look at the source characteristics used for time varying fringe interferometry
نویسنده
چکیده
Interference fringes are registered by detectors. All detectors absorb energy from a single or multiple superposed fields through the process of “square modulus” of the sum of the complex amplitudes. The detected energy becomes proportional to the total relative phase difference for all the superposed fields. The process creates ambiguity in discerning the effects due to frequency and phase modulations. We underscore that fringe detection being a physical interaction process between superposed fields and detecting molecules (including beam splitter boundary), the dipolar properties of atoms and molecules should be used to help us discern the effects due to frequency and phase modulations. We traditionally accept that orthogonally polarized light beams do not “interfere”. Or, light beams of different frequencies are “incoherent” to each other; but we have highly developed heterodyne interferometry for which the wave fronts of the superposed beams must be matched. Yet, we do not explicitly recognize the roles of the molecules of detectors and beam splitters that really carry out the real functions. Besides, understanding the various processes behind their dipolar response can help us innovate more precision interferometric techniques. As for examples: (i) How precisely the polarization should be parallel to produce perfect visibility fringes? (ii) How precisely equal the optical frequencies of superposed beams should be to create perfectly steady-state energy re-direction by a beam splitter in an interferometer with collimated and collinear beams. (iii) How small the wave front mis-match can be tolerated to produce perfect heterodyne fringes while superposing beams of different frequencies?
منابع مشابه
به کارگیری روش تداخل سنجی تمام نگاری دیجیتال با نوردهی دوگانه برای محاسبه توزیع دز جذبی در پلیمر پلی متیل متاآکریلات
Double-exposure digital holographic interferometry is a powerful and widespread technique for fine measurement of the induced changes in special physical properties, like density, refractive index and etc. In this paper, application of this technique for measuring the absorbed dose from an electron radiation source in poly (methyl methacrylate) material is studied through modeling. The method o...
متن کاملFringe modulation skewing effect in white-light vertical scanning interferometry.
An interference fringe modulation skewing effect in white-light vertical scanning interferometry that can produce a batwings artifact in a step height measurement is described. The skewing occurs at a position on or close to the edge of a step in the sample under measurement when the step height is less than the coherence length of the light source used. A diffraction model is used to explain t...
متن کاملDetermination of the displacement rate of the Masouleh landslide for management of landslide risk by Radar Interferometry
One of the most common natural phenomena occurring in mountainous regions of the world is landslide which causes critical damages and is considered as a natural disaster. Iran is a country which annually suffers from this disaster and its consequent damage of about 500 billion Rial. Over the last 15 years, an increasing number of researches have aimed to demonstrate the applicability of the im...
متن کاملA Comparison of Electronic Heterodyne Moire Deflectometry and Electroni,; Heterodyne Holographic Interferometry for Flow Measurements
Electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry are compared as methods for the accurate measurement of refractive index and density change distributions of phase object p . Experimental results are presented to show that the two methods have comparable accuracy for measuring the first derivative of the intE-ferometric fringe shift. The phase objec...
متن کاملTheoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector
This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector f...
متن کامل